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Abstract. An Input/Output Automaton is an automaton with a finite number of 
state where each transition is associated with a single input or output 
interaction. In this paper, we consider a generalization of this formalism, the 
Partial Order Input/Output Automata (POIOA), in which each transition is 
associated with a partially ordered set of inputs and outputs. This new 
formalism allows the specification of concurrency between inputs and outputs 
in a very general, direct and concise way.  In this paper, we give a formal 
definition of this formalism, and define several conformance relations for 
comparing system specifications expressed in this formalism. Then we show 
how to derive a test suite that guarantees to detect faults defined by a POIOA-
specific fault model: transfer faults, missing output faults, unspecified output 
faults, weaker precondition faults and stronger precondition faults. 

Keywords: testing distributed systems, partial order, finite state automata, 
conformance relations, partial order automata  

1   Introduction 

Finite State Machines (FSM) are commonly used to model sequential systems. When 
modeling concurrent systems, other models have been used, such as multi-port 
automata [13], where several distributed ports are considered and an input at a given 
port can generate concurrent outputs at different ports. The multi-port automata model 
is however not really adapted for truly distributed systems, since input concurrency is 
not taken into account. In [1], a new model of automata is introduced, where each 
transition is equipped with a bipartite partially ordered set, consisting of a set of 
concurrent inputs and a set of causally related concurrent outputs. This new model 
provides the ability to directly and explicitly specify concurrency between inputs, and 
causal relationships between inputs and outputs. A testing method for this new model 
was also proposed. Even though the model is up to exponentially smaller than the 
equivalent multi-port model, in a case of an automata having an adaptive 



distinguishing sequence, the testing method proposed is able to generate a checking 
sequence which is polynomial in the number of inputs, and thus up to exponentially 
shorter than a checking sequence generated for an equivalent specification written as 
a multi-port automaton.  

This model still has the limitation that no order constraint can be defined for the 
concurrent inputs of a given transition. In this paper we present a more general model 
where order constraints can be defined for inputs as well as outputs for a given 
transition. This provides a more symmetrical framework which simplifies the 
composition of several automata. The order constraints for inputs defined for a given 
automaton can then be interpreted as assumptions that are made about the behavior of 
the automaton’s environment. A transition is therefore characterized by a multi-set of 
input/output events, where certain input or output interactions may occur several 
times, and a partial order between these events. We assume, however, that a transition 
starts with inputs and that there is no conflict between the initial inputs of different 
transitions starting from the same automaton state.  

We explain in this paper how the testing method that was defined for the previous 
model can be extended to our general case in an efficient manner. The basic idea is as 
follows: In order to test the order constraints imposed by a given input on the outputs 
of a given transition, first all inputs that may be applied (according to the partial order 
of the transition) before the given input, are applied and the resulting outputs are 
recorded. Then the given input is applied and the resulting outputs are recorded. A 
given output will occur in the first set of observed outputs if and only if it has no 
order constraint depending on the given input. The tests concerning the different 
inputs of a given transition can be combined into several test cases. However, several 
test cases are in general required to completely test the implemented partial order 
between inputs and outputs. Finally, the well-known methods for testing finite state 
machines can be used in our context for identifying the states of the automaton and to 
bring the implementation into the starting state from where a given transition can be 
tested.  

In Section 2 of this paper, we first give an intuitive explanation of our model of 
Partial-Order Input/Output Automata (POIOA), and then give a formal definition. We 
also discuss different criteria for comparing the partial orders of different transitions, 
and based on this, how the behavior of different POIOA can be compared. In 
particular, we consider that the specification of a system component is given in the 
form of a POIOA M1, as well as an implementation of this component in the form of 
a POIOA M2. We define a conformance relation, called quasi-equivalence, which 
states that, if satisfied between M2 and M1, the implementation provides the outputs 
in an order satisfying the specification, provided that the environment of the 
component presents the inputs in an order satisfying the specification.   

In Section 3, we present the testing methodology in detail and show that all faults 
defined by a given fault model are detected by the derived test sequence. We also 
indicate how the results observed during the tests can be used to diagnose specific 
faults within the implementation. Then, in Section 4, we provide some discussion of 
the assumptions we have to make about the implementation in order to assure the 
detection of all faults by our testing method. We also discuss how one can monitor the 
order between outputs in respect to one another, which may be defined by the 
specification or be implemented in a particular manner in the implementation. There 



are no simple test cases for this purpose because the implementation may behave in a 
non-deterministic manner. Finally, we discuss the assumptions we have made for our 
POIOA specification model. We give some justification for these assumptions and 
also discuss why it may be interesting to remove some of these assumptions in future 
work.  

2   Partial Order Input/Output Automata 

2.1 Basic concepts 

An Input/Output Automaton (IOA) is an automaton with a finite number of states 
where each transition is associated with a single input or output interaction [2]. In [1] 
we considered the testing of so-called “Input/Output Partial Automata” where each 
transition is associated with one or more, possibly concurrent inputs and zero, one or 
more outputs that are related to the inputs by a given dependency relation. For 
instance, an output o2 for a transition t may only occur after the occurrence of two 
inputs i1 and i2, while output o1 may occur as soon as input i1 has occurred. 
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Figure 1:  partially ordered multisets of input and output events 

In this paper we consider a more general form of automata where each transition is 
associated with a partially ordered set of input and output events. For instance as 
shown in Figure 1(a), a given transition t may be associated with the following set of 
events: inputs i1, i2 (occurring twice), i3, and outputs o1, o2 (occurring twice), o3 and o4  
for which the following ordering relations must hold: i1 < o1; i2 (first occurrence) < o2 

(first occurrence); i1  < o2 (first occurrence); o2 (first occurrence) < i2 (second 
occurrence); i1 < i3; i2 (second occurrence) < o3 and o2 (second occurrences), and o3   < 
o4.  

Here the notation event-1 < event-2 means that there is an order constraint between 
the occurrence of event-1 and event-2, namely, that event-2 occurs after event-1. The 
order between the events of a transition represent two aspects: (a) a safety properties, 
and (b) a liveness properties, sometimes called "progress properties". The order event-



1 < event-2 implies the safety property stating that event-2 will only happen after 
event-1 has already happened. If Earlier-2 is the set of events e of the transitions for 
which e < event-2 holds, then the order of events implies that event-2 will eventually 
occur when all events in Earlier-2 have occurred. We note that often, as shown in 
Figure 1(a), we are only interested in the basic order constraints from which the 
complete order relationship can be constructed by transitivity. For instance, Figure 
1(b) shows the complete order relationship generated by the constraints shown in 
Figure 1(a).  

It is clear that such specifications of partial order input/output automata (POIOA) 
allow for much concurrency between the inputs and outputs belonging to the same 
transition. We believe that this is an important feature for describing distributed 
systems. In fact, it is often difficult to determine, in a distributed system, in which 
order in time two particular events occur if they occur in different points in space. 
Therefore one may ask the question how it would be possible to check whether two 
interactions, for instance i1 and i3, occur in the order specified (for instance in the 
order i1 < i3 as specified above). One way to bring some rigor into this question is to 
introduce ports, sometimes called interaction points or service access points, and to 
associate each input/output event with a particular port of the distributed system. Then 
one may assume that the order of events at each port can be determined, while the 
order of events occurring at different ports can not be determined. The situation is 
similar in UML sequence diagrams, were vertical lines represent different system 
components and events belonging to the same component are normally executed in 
sequential order while the order of events at different components is only constrained 
by message transmissions. – In this paper we do not introduce ports nor system 
components. We simply assume that the order of execution of two events can be 
determined if a particular order of execution is specified for them.  

For a reactive automaton, in the following called input-guarded, we assume that 
all initial events of each transition are inputs. We call an event of a transition initial if 
there is no other event that must precede it. In general, for so-called active automata, 
there may be transitions that can start with the production of an output. This 
corresponds to an output transition in a classical IOA. In the following, we normally 
assume that the considered automaton is input-guarded. 

In order to allow for a straightforward determination of the next transition of a 
POIOA, we assume that the following condition is satisfied concerning the initial 
events of different transitions starting from the same state: The set of initial events of 
two transitions starting from the same state must be disjoint. We say that the 
automaton has exclusive transitions. 

 In addition, we assume that each state of the automaton is a “strong 
synchronization point”, that is, the initial input for the next transition will only 
become available after all events of the previous transition have occurred. We note, 
however, that this assumption may not always be realistic in a distributed system; and 
one may consider a distributed model with several local components where the 
sequential order between transitions is weak sequencing, that is, events pertaining to 
the next transition may occur at a given component after all local events of the 
previous transitions have (locally) occurred. This weak sequencing semantics has 
been adopted for High-Level Message Sequence Charts (HMSC) [3], where the 
"local" events are those pertaining to a given system component, as for UML 



sequence diagrams. In fact, the model of HMSC is similar to our model of POIOA: A 
HMSC is a kind of state diagram where each state represents the execution of a 
sequence diagram (MSC) and the transition from one state to another represents the 
sequential execution of the two associated MSCs with weak sequencing semantics. In 
the POIOA model a transition can be equated to the partial order defined by a 
sequence diagram. For simplifying the semantics of the POIOA, we have assumed 
that the sequential execution of two transitions has strong sequencing semantics. It is 
to be noted that weak sequencing leads to many difficulties for the implementation of 
the specified ordering in a distributed environment, as discussed in many research 
papers [4,5,6,7].  

As explained by Adabi and Lamport [8], the specification of the requirements that 
a system component must satisfy in the context of a larger system normally consists 
of two parts: (a) the assumptions that can be made about the behavior of the 
environment in which the component will operate, and (b) the guarantees about the 
behavior of the component that the implementation must satisfy. In the context of 
IOA (see for instance [9]), the guarantees are related to the output produced by the 
specified component (in relation to the inputs received), while the environment should 
satisfy certain assumptions about the order in which input to the component will be 
provided (in relation with the produced output earlier). In the case of a partially 
defined, state-deterministic IOA (where the state is determined by the past sequence 
of input/output events), the fact that in a given state some given input is not specified 
is then interpreted as the assumption that the environment will not produce this input 
when the component is in that given state. 

During the testing of an implementation for conformance to an IOA specification, 
two types of problems may occur: After a given execution trace, that is, a given 
sequence of input and output events, the specification will be in a particular state. If 
the next event that occurs does not corresponds to a transition of the IOA 
specification then we have encountered a problem: If the event is an output, an 
implementation fault has been detected; if it is an input, this is an unexpected input, 
also called "unspecified reception", which represents a wrong behavior of the 
environment. 

A specification of a system component C in the form of a POIOA SC, similarly, 
can be interpreted as defining assumptions about the environment of C and guarantees 
that the implementation of C must satisfy. The difference between an IOA and a 
POIOA is that a transition of the latter is characterized by a set of input/output events 
with a defined partial order instead of a single input or output event. Similarly as for 
an IOA, one can define a dual specification for a given POIOA which represents the 
most general behavior of the environment and can be used for testing an 
implementation of the given specification. 

It is clear that the behavior of a POIOA S can be modeled by an IOA S' as follows: 
The states of S' include the states of S and a large number of intermediate states that 
correspond to the partial execution of a transition. For instance, the POIOA transition 
t shown in Figure 2(a) can be modeled by the IOA transitions shown in Figure 2(c). 
The conformance testing of an implementation in respect to a specification S may 
therefore be performed by a test suite that checks the performance in respect to S' and 
that is obtained by one of the known test development methods for finite state 
machines or IOA. However, this approach is not very efficient since the equivalent 



IOA specification S' is in general much more complex than the original POIOA 
specification S.  

We propose in this paper a method for deriving a test suite that guarantees to detect 
all faults defined by a POIOA-specific fault model. Specifically, we propose to test an 
implementation for the following faults: 
• Transfer fault: A transition of the implementation leads to a state different from 

what is specified. 
• Unspecified output: An output produced during a given transition is not in the set 

of outputs specified; or the number of occurrences of an output is larger than 
allowed by the specification. 

• Missing output: An output foreseen by the transition is not produced after all 
possible inputs (those that could be applied before that output according to the 
specification) have been applied. 

• Weaker precondition: An output foreseen by a transition is produced before all 
the events that are specified as precondition have occurred. 

• Stronger precondition: An output foreseen by a transition is not produced after 
all its precondition events have occurred, but it is produced after certain other 
expected input events have been applied. 

Transfer faults are tested by simply adapting the classical state recognition and 
transition verification methods from IOAs to POIOAs [1]. Testing for the other faults 
require new techniques, especially the weaker and stronger precondition faults. Our 
approach to catch these types of faults is to test each input event of a given transition 
separately. For each input event i of the tested transition, we proceed in two steps. 
First of all, we apply to the implementation all input events that are not after i in the 
partial order of the transition (that is, inputs that are either before i or concurrent to i), 
and we observe the produced outputs. The set of outputs that we observe are not pre-
conditioned by i in the implementation, since they are generated even though i has not 
been input yet. If one of these observed outputs is supposed to have i as precondition 
according to the POIOA specification, then we have detected a case of weaker 
precondition fault in the implementation. During the second step input i is applied and 
the subsequent outputs are observed. These outputs are pre-conditioned by i in the 
implementation, since they were not produced until after i was input. If one of these 
observed inputs was not supposed  to have i as precondition according to the POIOA 
specification, then we have detected a case of stronger precondition fault in the 
implementation. We repeat this process for all inputs of all transitions. 
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Figure 2: (a) specification of transition. (b) implementation of the specified 

transition in terms of three separate transitions. (c) An Input/Output Automata model 
equivalent to the POIOA transition shown in (a)                                   

2.2 Formalization of the automata model 

In the following, we suppose that two disjoint nonempty sets I and O (representing 
inputs and output) are given; set V= I ∪ O. Recall that a partial order is a pair (E, ≤) 
where E is a set and ≤ is a transitive, antisymmetric and reflexive binary relation on E, 
and < is the irreflexive part of ≤. The set of  minimal elements of E is the set 
min(E)={x∈E,for all z∈E, z ≤ x implies z=x}. 

Definition: An V-pomset (partial order multi-set) is a tuple ω= (E, ≤,µ) such that 
1. (E, ≤) is a partial order, and 
2. µ: E→ V  a total mapping called the labeling. 

 
A POIOA is a special kind of finite state transition machine. A POIOA has a finite 

number of states and transitions, and each transition is associated with a partial order 
of input and output events, as follows:  

Definition: A Partial Order  Input/Output Automaton (or POIO Automaton, 
POIOA) is a tuple M= (S, sin, I, O,T), where 

1. S is a finite set of states and sin∈ S is the initial state; the number of 
       states of M is denoted n = |S|;  
2. I and O are disjoint and nonempty  input and output sets, respectively ; 
3. T  ⊆ S×Ω(I∪ O) × S is the set of transitions, where Ω(I∪ O) is the set of all 

(I∪ O)-pomsets. 
We say that an POIOA is input-guarded if for each transition the minimal events 
are all inputs. 
We say that an POIOA has exclusive transitions if for any two transitions  t1=(s, 
ω1,s1) and  t2=(s,ω2,s2) starting from the same state s, we have      
   min(ω1) ∩ min(ω2)= ∅. Note: This implies that the next transition from a given 
state is determined by the first input that occurs. 



We say that a POIOA is strongly synchronized if all input/output events of one 
transition are performed before any event of the next transition of the automata 
occurs.  
 
We consider in this paper mainly strongly synchronized, input-guarded POIOA. 

The implications of these restrictions are discussed in Section 4. 
In this paper we assume that a POIOA is the specification of a distributed system 

where the inputs and outputs may occur at different system interfaces. For the purpose 
of testing an implementation for conformance with a given POIOA specification, we 
also assume that we can model the implementation by a POIOA and that the 
implementation satisfies certain assumptions that can be modeled by restrictions on 
the form of the POIOA implementation model.  

2.3 Comparing the behavior of different POIOA  

In this section we first define several basic conformance relations that can be used for 
comparing the behavior of different POIOA, for instance the specification of a system 
and its implementation. It turns out that these basic relations correspond to the 
different types faults that an implementation may have. We then discuss the nature of 
these relations and define the quasi-equivalence relation that can be easily tested by 
the method described in Section 3. 

We consider the following basic conformance relations between two pomsets ω2  
and  ω1 . We assume in the following discussion that ω1 is associated with a transition 
in the system specification and  ω2 is associated with a corresponding transition in the 
model of its implementation. 
• ω2  has more outputs constraints (that is, has less outputs) than ω1 (written ω2  

=>≠
OC  ω1). This corresponds to missing output faults. The opposite, ω1  =>≠

OC  ω2  
, corresponds to unspecified output faults. 

• ω2  has more input constraints (that is, has less inputs) than ω1 (written ω2  =>≠
IC  

ω1). This means that the implementation considers certain inputs that are foreseen 
by the specification to be unexpected, and the behavior of the implementation in 
response to such input is not defined by the POIOA model of the implementation. 
The opposite means that the implementation expects some input that is not 
foreseen by the specification; if some output depends on this input (according to 
the implementation model) this input will not occur unless the additional input is 
applied.. 

• ω2  has more output constraints depending on inputs than ω1 (written ω2  
=>≠

OCI  ω1). This corresponds to a stronger precondition fault. The opposite 
corresponds to weaker precondition faults. 

• ω2  has more output constraints depending on outputs than ω1 (written ω2  
=>≠

OCO  ω1). This means that there is less concurrency between different outputs 
in the implementation as compared with the specification. The opposite 
corresponds to output order faults. This is a type of fault not mentioned in the 
earlier discussion in Section 2.1. 



• ω2  has more input constraints depending on outputs than ω1 (written ω2  
=>≠

ICO  ω1). This means that the implementation makes additional assumptions 
about the time when inputs may occur, as compared with the specification. In the 
case of inputs not satisfying the constraints of the implementation model, its 
behavior is not defined. 

• ω2  has more input constraints depending on inputs than ω1 (written ω2  =>≠
ICI  

ω1). This means that the implementation makes additional assumptions about the 
allowed concurrency of inputs, as compared with the specification. 

In a similar fashion we write ω2  =>XXX  ω1 for the non-strict version of =>≠
XXX, 

meaning that  ω2  =>≠
XXX  ω1 or  ω2 = ω1. 

Formally, these relations can be defined as follows: If ω1= (E1,≤1 ,µ1) and ω2 
=(E2,≤2, µ2) are two pomsets labeled over an input/output alphabet I∪O, we define 
the above relations as follows: 

• ω2  =>OC  ω1 if the bag µ1(E1) ∩ O is included in the bag µ2(E2) ∩ O . 
• ω2  =>IC  ω1 … similarly 
• ω2  =>OCI  ω1 if E2 = E1 , µ2(E2) = µ1(E1) and ≤2  can be obtained from ≤1 by 

repeating the following process: 
o Step 1: Add some additional order relationship instances, each 

indicating that some output event should wait for some input event. 
o Step 2: Form the new pomset by taking the transitive closure of the 

order relationship obtained in Step 1. 
• ω2  =>OCO  ω1 if similarly ≤2  can be obtained from ≤1 by a process as above, 

where in Step 1 some relationship instances are added, each indicating  that some 
output event should wait for some other output event.  

• ω2  =>ICO  ω1 if … similarly.  
• ω2  =>ICI  ω1 if … similarly.  

Definition: We say that a pomset  ω2 =(E2,≤2, µ2)  is quasi-equivalent to a pomset 
ω1= (E1,≤1 ,µ1) , written ω2  =>qe  ω1 , if there is a finite sequence of pomsets ω (i)

 

for i = 1, 2, … , n such that ω (1)
 =  ω1 , ω (n)

 =  ω2  and for all i = 2, 3, …, n either 
• ω (i)

  =>OCO  ω (i-1)
 or  

• ω (i-1)
  =>ICI  ω (i)

  or 
• ω (i-1)

  =>ICO  ω (i)
  

The means that ω2 is quasi-equivalent to ω1 if either ω2 = ω1 or it is obtained from 
ω2 by reducing the input order constraints (input-input or input-output), and/or by 
increasing the output-output constraints. We note that the reduced input order 
constraints of an implementation will not be tested in the case of conformance testing 
where one wants to verify whether the implementation satisfies the requirements of 
the specification. During the testing, the test case (the environment of the system 
under test) will have to fulfill the assumptions that the specification makes about the 
environment, which includes the input-input constraints of the specification. 

It would be interesting to test whether the output-output constraints of the 
implementation are stronger than those defined in the specification. However, this is 
difficult to test, as discussed in Section 4.2. 

Definition: Let M= (S, sin, I, O, T) be a POIOA. A (finite) transition trace of M is a 
word w = ω1ω2ω3…ωn  such that there exist t1t2t3… tn ∈T* such that the   ti=(si,ωi,,si

+) 
satisfy 



1. s1= sin 
2. s+

i=si+1 for all i. 
We denote the set of transition traces of M as Tr(M). 

 
Definition: Let M= (S, sin, I, O, T) and M’= (S’, sin’, I, O, T’) be two POIOA, and 

let w = ω1ω2ω3…ωn  be a transition trace of M and w’ = ω’1ω’2ω’3…ω’n be a transition 
trace of M’. We say that w is quasi-equivalent to w’ (written w  =>qe   w') iff (by 
induction) 

• if n=1 (w = ω1 and w’ = ω’1 )  ω1 =>qe ω’1  
• else (w = w1 ω2 and . w’ = w1’ ω’2. )  w1 =>qe w1 and ω2 =>qe ω’2 . 

 
We now define the notion of trace quasi-equivalence between two POIOA as 

being the fact that the traces of one POIOA are by quasi-equivalence included in the 
traces of the other one. Note: This notion has some similarity with the notion of quasi-
equivalence as defined for partially defined finite state machines.   

Definition:  Let M= (S, sin, I, O, T) and M’= (S’, sin’, I’, O’, T’) be two POIOA. M 
is trace quasi-equivalent to M' if  
1. I' ⊆ I and O'⊆ O 
For each t' in Tr(M'), there is a  t in Tr(M) such that t =>qe  t' 
 
In summary, the trace quasi-equivalence of a POIOA M with a POIOA M' (where 

M may be the implementation of M') means that (a) M may have a different number 
of states than M', (b) M may have additional transitions (for which there are no 
corresponding transitions in M') which must have exclusive inputs with the transitions 
defined in M', and these additional transitions may involve inputs and outputs that are 
not defined for M'. However, the transitions of M that correspond to transitions in M' 
must be quite similar: (c) they must involve the same input and output events, and (d) 
they must have the same order constraints for outputs depending on inputs, whereas 
(e) the concurrency between outputs may be reduced.  

The interesting property of trace quasi-equivalence is the following: If an 
implementation M is trace quasi-equivalent to the specification M', then this 
implementation will exhibit the (safeness and liveness) properties to be guaranteed by 
the outputs according to the specification, if the assumptions concerning the applied 
inputs, as specified by the specification, is satisfied by the real environment in which 
the implementation evolves. 

3   Transition Testing 

In this section, we explain a method for generating test cases for POIOA and outline 
the diagnostics for each of the possible implementation faults outlines in Section 2.1. 
We then show how to combine the elementary test cases for specific input events into 
longer sequential test cases, and conclude with a method for testing full conformance 
of implementations with reliable resets. We concentrate on the testing of individual 
transitions and their input/output behavior, related to unspecified and missing outputs 



and weaker or stronger preconditions. For the testing of transfer faults, the known 
methods developed for finite state machines can be directly applied to POIOA [11]. 

3.1 Single input event testing 

Let M= (S, sin, I, O, T) be a POIOA, and let t=(s,ω,,s’) ∈ T be a transition of T. Our 
goal is to generate a set of test cases, in the following called test suite, to verify that 
an implementation of M has correctly implemented a corresponding transition. By 
correctly implemented we mean that the corresponding transition does not include any 
of the faults mentioned in Section 2.1. We therefore have to test that the implemented 
transition has the same input and output events as specified for ω and that the output 
constraints depending on inputs are the same. We note that the here described test 
cases do not check the output constraints depending on outputs, nor any stronger 
order constraints for inputs (that are not assumed by the specification).  

Notation: Given a pomset ω = (Eω, ≤ω,µ) and an element x ∈ Eω, we write  
↓x = {y ∈ Eω, ¬(x ≤ω y)} for the set of elements of Eω that are neither greater than 

nor equal to x.  
For each input event i of the transition t=(s,ω,,s’), the test suite should include the 

following test case, where we assume that the implementation is already in the 
starting state of the corresponding transition: 
1. Enter all the input events in ↓i, respecting the ordering constraints, and observe 

the multiset S1 of produced output events. 
2. Enter input event i and observe the multiset S2 of produced output events. 
3. Enter the input events of ω that have not been input yet, respecting the ordering 

constraints, and observe the multiset S3 of produced output events. 
 

Proposition: The tested transition of the implementation is quasi-equivalent to the 
corresponding transition in the specification if and only if, for all inputs of the 
transition, the observed output multisets S1, S2 and S3 have the value predicted by 
the specification.  

The following diagnostics can be issued depending on the outputs observed within 
the three multisets S1, S2 and S3:  
• Unspecified output fault: the number of occurrences of an output o in S1∪ S2∪ 

S3 is larger than the number of occurrence of that output as specified in ω. In this 
case, at least one occurrence of o is produced by the implementation while not 
being specified by the POIOA specification. 

• Missing output: the number of occurrence of an output o in S1∪ S2∪ S3 is 
smaller than the number of occurrence of that output as specified in ω. In this 
case, at least one occurrence of o is not produced by the implementation while 
being specified by the POIOA specification. 

If there is a single fault for a given output label, we can diagnose the following faults:  
• Weaker precondition: the number of occurrences of the output o in S1 is larger 

than the number predicted by the specification. In this case, at least one 
occurrence of o is produced by the implementation prior to the input i while i  is 
specified by the POIOA specification as a precondition of o.  



• Stronger precondition: the number of occurrences of the output o in S2 is larger 
than the predicted by the specification. In this case, at least one occurrence of o is 
produced by the implementation only after the input i (that is, i is a precondition 
for o in the implementation) while i is not specified by the POIOA specification 
as a precondition of o. 

3.2 Testing several input events 

The test protocol described in the Section 3.1 cannot be used to test stronger or 
weaker preconditions for more than one input event per transition. It is possible to 
extend this protocol to several input events, as long as these events are all ordered in 
the partial order of the corresponding pomset. 

Let i1, i2,…, ik  be a set of input events of the pomset ω = (Eω, ≤ω,µ) of a transition 
of the IOPOA going from state s to state s’ such that i1 ≤ω i2 ≤ω …≤ω ik. Then the test 
cases for these inputs, as described in the subsection above, can be combined  into a 
single test case that tests all k inputs sequentially as follows, assuming that the 
implementation is in the starting state of the transition: 
1. For m=1 to k  

a. Enter all the input events in ↓im that have not been input yet, respecting the 
ordering constraints, and observe the multiset S1m of produced output events. 

b. Enter input event im and observe the multiset S2m of produced output events. 
2. Enter the input events of ω that have not yet been input, respecting the ordering 

constraints, and observe the multiset S3 of produced output events. 
The diagnostics described in Section 3.1 can be adapted in the following way: 
• For missing and unspecified outputs faults, use the multiset S11∪ S12∪…∪ S1k∪ 

S21∪ S22∪…∪ S2k ∪ S3, in place of S1∪ S2∪ S3. 
• For weaker and stronger precondition faults, apply the diagnostics described in 

Section 3.1 for each input im separately (m=1 to k), using the multiset S11∪ 
S12∪…∪ S1m∪ S21∪ S22∪…∪ S2 m-1 in place of S1, and S2m in place of S2. 

Moreover, it can be easily shown that the test cases of two concurrent inputs (as 
defined in Section 3.1) cannot be combined into a single pass through the transition. 
Indeed, if i1 and i2 are two concurrent inputs, then by definition i2 ∈ ↓i1 and i1 ∈ ↓i2, 
so whichever input is tested first, the other one will have to be entered during Step 2 
of the test case and thus will not be testable anymore during the same pass through the 
transition.  

Since we have shown that we can test any number of input events sequentially in 
the same pass over a given transition if and only if these events are all mutually 
ordered in the pomset of that transition (they define a chain in the order), we can 
deduce that an optimal strategy (in terms of number of passes) for testing a given 
transition for all inputs consists of finding the minimum number of chains of the order 
that would include all input events. This is a classical property of ordered set theory 
called the minimal chain decomposition of an order [10] (and the number of chains in 
the minimal chain decomposition is equal to the largest number of mutually 
incomparable elements of the order). Thus, in order to test a transition associated with 
the pomset ω = (Eω, ≤ω,µ) in an optimal way, we must create ωI=(EI, ≤I, µI), the 



projection of ω onto the input events, then create a minimal chain decomposition of 
(EI, ≤I), and finally, for each chain of the decomposition, bring the implementation to 
the starting state of the transition and apply the above combined test case for the input 
events of that chain.  

4   Discussion 

In this section, we come back to the assumptions we have made about the POIOA 
representing the system specification and about the properties of the implementation, 
and discuss their nature and the possibility of avoiding them. We also discuss how to 
test constraints on output concurrency and input order assumptions. 

4.1 Assumptions about the implementation 

When we apply our testing algorithm, we make the following assumptions on the 
specification and the implementation:  
1. As explained in Section 3.3, we must make some assumptions on the number of 

states of the implementation. 
2. Bounded response time: This means that when all precondition events of a 

given output event have occurred, then the implementation will produce the 
output within a bounded time delay. Therefore, if the output did not occur within 
this delay, it can be concluded that it will not be produced without any additional 
input being applied. This appears to be a reasonable assumption. It is also made 
for testing finite state machines, where after each input one has to wait for the 
resulting outputs before the next input is applied. 

3. One-to-one correspondence of transitions in the specification and 
implementation: We have implicitly assumed that the implementation of a given 
transition of the specification can be modeled as a single transition in the 
implementation POIOA. As an example, we consider the case of the specification 
transition shown in Figure 2(a). It has three concurrent initial inputs. A valid 
implementation may foresee three different transitions, depending on which of 
the three inputs occurs first, as shown in Figure 2(b). Assume now that the 
implementation of the third transition has a missing output (o1 does not occur).  
Then this fault will not be detected by the test cases derived from the 
specification according to our method. In order to detect all such faults, one may 
adapt our test generation procedure by applying it not to the specification, but to 
a refined model of split transitions, as shown in Figure 2(b) . However, this leads 
to very long test suites, since  the number of these interleaving can be 
exponentially larger than the number of order constraints. - The assumption of 
one-to-one correspondence of transitions also implies that the implementation 
exhibits a certain form of determinism in its behavior. For instance, it is not 
allowed that the implementation, non-deterministically, sometimes realizes the 
specified ordering constraints, and sometimes does not, possibly depending on 
some parameter outside the scope of the specification (for instance, depending on 



the temperature, or the total execution time since the start-up of the 
implementation. 

4.2. Testing other conformance relations 

As mentioned earlier, the proposed test cases are not able to check the allowed 
concurrency between outputs, that is, the output constraints depending on outputs. For 
instance, how could one test that the implementation has not implemented the 
transition shown in Figure 1(c), instead of the specified transition of Figure 1(a) 
which specifies that output o4 should come after output o3. The transition shown in 
Figure 1(c) does not satisfy this requirement. The model of the latter transition allows 
for non-determinism (the three outputs after the second input i2 may be generated in 
any order). If we assume that the implementation may be faulty and actually be 
modeled by the transition of Figure 1(c), then we may also assume that the 
implementation really presents such non-determinism, possibly due to different 
possible interleavings of concurrent activities. If we want to distinguish between the 
transitions of Figure 1(a) and 1(c) through testing, we have to execute an appropriate 
test case several times: If in one of the observed execution scenarios, output o4 occurs 
before o3, then we know that the implementation does not realize the transition of 
Figure 1(a). For a positive verdict, we need to execute the test a large number of times 
in order to obtain a sufficiently high statistically assurance that the right order to not 
obtained by chance. We have the same difficulty of non-determinism when we want 
to test whether the implementation has stronger output constraints depending on 
outputs than the specification.  

We have not discussed above how to test whether a transition of the 
implementation model has less inputs or has stronger input order constraints than the 
corresponding transition of the specification. These are cases where the 
implementation makes stronger assumptions about its environment that defined in the 
specification. This means that during the execution of a complete test suite, there will 
be test cases that apply inputs to the implementation that are not expected, or that 
apply inputs in an order that is not foreseen by the implementation model. Since the 
POIOA model of the implementation does not define the behavior of the 
implementation in these cases, we can only assume that the implementation will 
detect these situations and provide some kind of error message or unusual behavior 
pattern that can distinguished by the test harness. Under this assumption, it can 
therefore be expected that such problems will be detected by a test suite derived as 
explained in Section 3. 

6   Conclusion 

In this paper, we introduce a new type of automata, called Partial-Order Input/Output 
Automata, for which each transition is associated with a partially ordered set of input 
and output events. This new model is a generalization of a previous version where 
only bipartite orders where permitted. Relaxing the bipartite constraint allows to 
specify any combination of inputs and outputs, with any concurrency or ordering 



constraints between these events. We provide a formal model for these automata, and 
give formal definitions of the comparison of behavior between two automata. We then 
provide a testing methodology which can be used to detect some of the faults that 
have been formally specified. Finally, we explain the assumptions we have made 
about the implementations under test and about the POIOA model, provide some 
justifications and discuss why it would be interesting to remove some of these 
assumptions in future work.  
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